Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 1(10): 1766-1777, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723279

RESUMO

Recent experiments suggested that ATP can effectively stabilize protein structure and inhibit protein aggregation when its concentration is less than 10 mM, which is significantly lower than cosolvent concentrations required in conventional mechanisms. The ultrahigh efficiency of ATP suggests a unique mechanism that is fundamentally different from previous models of cosolvents. In this work, we used molecular dynamics simulation and experiments to study the interactions of ATPs with three proteins: lysozyme, ubiquitin, and malate dehydrogenase. ATP tends to bind to the surface regions with high flexibility and high degree of hydration. These regions are also vulnerable to thermal perturbations. The bound ATPs further assemble into ATP clusters mediated by Mg2+ and Na+ ions. More interestingly, in Mg2+-free ATP solution, Na+ at higher concentration (150 mM under physiological conditions) can similarly mediate the formation of the ATP cluster on protein. The ATP cluster can effectively reduce the fluctuations of the vulnerable region and thus stabilize the protein against thermal perturbations. Both ATP binding and the considerable improvement of thermal stability of ATP-bound protein were verified by experiments.

2.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978166

RESUMO

Mussels can strongly adhere to hydrophilic minerals in sea habitats by secreting adhesive proteins. The adhesion ability of these proteins is often attributed to the presence of Dopa derived from posttranslational modification of Tyr, whereas the contribution of structural feature is overlooked. It remains largely unknown how adhesive proteins overcome the surface-bound water layer to establish underwater adhesion. Here, we use molecular dynamics simulations to probe the conformations of adhesive protein Pvfp-5ß and its salt-tolerant underwater adhesion on superhydrophilic mica. Dopa and positively charged basic residues form pairs, in this intrinsically disordered protein, and these residue pairs can lead to firm surface binding. Our simulations further suggest that the unmodified Tyr shows similar functions on surface adhesion by forming pairing structure with a positively charged residue. We confirm the presence of these residue pairs and verify the strong binding ability of unmodified proteins using nuclear magnetic resonance spectroscopy and lap shear tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...